
Authentication, Access Control, and Intrusion Detection�

Ravi S. Sandhuy and Pierangela Samaratiz

1 Introduction

An important requirement of any information management system is to protect information against
improper disclosure or modi�cation (known as con�dentiality and integrity respectively). Three
mutually supportive technologies are used to achieve this goal. Authentication, access control and
audit together provide the foundation for information and system security as follows. Authentication
establishes the identity of one party to another. Most commonly authentication establishes the
identity of a user to some part of the system typically by means of a password. More generally,
authentication can be computer-to-computer or process-to-process and mutual in both directions.
Access control determines what one party will allow another to do with respect to resources and
objects mediated by the former. Access control usually requires authentication as a prerequisite.
The audit process gathers data about activity in the system and analyzes it to discover security
violations or diagnose their cause. Analysis can occur o�-line after the fact or it can occur on-line
more or less in real time. In the latter case the process is usually called intrusion detection. This
chapter discusses the scope and characteristics of these security controls.

Figure 1 is a logical picture of these security services and their interactions. Access control
constrains what a user can do directly, as well what programs executing on behalf of the user
are allowed to do. Access control is concerned with limiting the activity of legitimate users who
have been successfully authenticated. It is enforced by a reference monitor which mediates every
attempted access by a user (or program executing on behalf of that user) to objects in the sys-
tem. The reference monitor consults an authorization database in order to determine if the user
attempting to do an operation is actually authorized to perform that operation. Authorizations
in this database are administered and maintained by a security administrator. The administrator
sets these authorizations on the basis of the security policy of the organization. Users may also
be able to modify some portion of the authorization database, for instance, to set permissions for
their personal �les. Auditing monitors and keeps a record of relevant activity in the system.

Figure 1 is a logical picture and should not be interpreted literally. For instance, as we will see
later, the authorization database is often stored with the objects being protected by the reference
monitor rather than in a physically separate area. The picture is also somewhat idealized in that
the separation between authentication, access control, auditing and administration services may
not always be so clear cut. This separation is considered highly desirable but is not always faithfully
implemented in every system.

�Part of this paper appeared under the title \Access Control: Principles and Practice" in IEEE Communications,

vol. 32, no. 9, pp. 40-48 [SS94].
yISSE Department, MS 4A4, George Mason University, Fairfax, VA 22030. Voice: +1 703-993-1659, Fax: +1

703-993-1638, email: sandhu@isse.gmu.edu, http://www.isse.gmu.edu/faculty/sandhu
zDipartmento di Scienze dell'Informazione, Universit�a degli Studi di Milano, Via Comelico 39/41, 20135, Milano,

Italy. Voice: +39-2-55006257, Fax: +39-2-55006253, Email: samarati@dsi.unimi.it

1

It is important to make a clear distinction between authentication and access control. Correctly
establishing the identity of the user is the responsibility of the authentication service. Access control
assumes that identity of the user has been successfully veri�ed prior to enforcement of access control
via a reference monitor. The e�ectiveness of the access control rests on a proper user identi�cation
and on the correctness of the authorizations governing the reference monitor.

It is also important to understand that access control is not a complete solution for securing a
system. It must be coupled with auditing. Audit controls concern a posteriori analysis of all the
requests and activities of users in the system. Auditing requires the recording of all user requests and
activities for their later analysis. Audit controls are useful both as deterrent against misbehavior
as well as a means to analyze the users behavior in using the system to �nd out about possible
attempted or actual violations. Auditing can also be useful for determining possible
aws in the
security system. Finally, auditing is essential to ensure that authorized users do not misuse their
privileges. In other words, to hold users accountable for their actions. Note that e�ective auditing
requires that good authentication be in place, otherwise it is not possible to reliably attribute
activity to individual users. E�ective auditing also requires good access control, otherwise the
audit records can themselves be modi�ed by an attacker.

These three technologies are interrelated and mutually supportive. In the following sections we
respectively discuss authentication, access control and auditing and intrusion detection.

2 Authentication

Authentication is in many ways the most primary security service on which other security services
depend. Without good authentication there is little point in focusing attention on strong access
control or strong intrusion detection. The reader is surely familiar with the process of signing
on to a computer system by providing an identi�er and a password. In this most familiar form
authentication establishes the identity of a human user to a computer. In a networked environ-
ment authentication becomes more di�cult. An attacker who observes network tra�c can replay
authentication protocols to masquerade as a legitimate user.

More generally, authentication establishes the identity of one computer to another. Often,
authentication is required to be performed in both directions. This is certainly true when two
computers are engaged in communication as peers. Even in a client-server situation mutual au-
thentication is useful. Similarly, authentication of a computer to a user is also useful to prevent
against spoo�ng attacks in which one computer masquerades as another (perhaps to capture user
identi�ers and passwords).

Often we need a combination of user-to-computer and computer-to-computer authentication.
Roughly speaking, user-to-computer authentication is required to establish identity of the user to
a workstation and computer-to-computer authentication is required for establishing the identity
of the workstation acting on behalf of the user to a server on the system (and vice versa). In
distributed systems authentication must be maintained through the life of a conversation between
two computers. Authentication needs to be integrated into each packet of data that is communi-
cated. Integrity of the contents of each packet, and perhaps con�dentiality of contents, must also
be ensured.

Our focus in this chapter is on user-to-computer authentication. User-to-computer authentica-
tion can be based on one or more of the following:

� something the user knows, such as a password,

� something the user possesses, such as a credit-card sized cryptographic token or smart card,

2

or

� something the user is, exhibited in a biometric signature such as a �ngerprint or voice-print.

We now discuss these in turn.

2.1 Authentication by Passwords

Password-based authentication is the most common technique but it has signi�cant problems. A
well-known vulnerability of passwords is that they can be guessed, especially since users are prone
to selecting weak passwords. A password can be snooped by simply observing a user keying it in.
Users often need to provide their password when someone else is in a position to observe it as it is
keyed in. Such compromise can occur without the user even being aware of it. It is also hard for
users to remember too many passwords, especially for services that are rarely used. Nevertheless,
because of low cost and low technology requirements, passwords are likely to be around for some
time to come.

An intrinsic problem with passwords is that they can be shared, which breaks down account-
ability in the system. It is all to easy for a user to give their password to another user. Sometimes
poor system design actually encourages password sharing because there may be no other convenient
means of delegating permissions of one user to another (even though the security policy allows the
delegation).

Password management is required to prod users to regularly change their passwords, to select
good ones and to protect them with care. Excessive password management makes adversaries of
users and security administrators which can be counter-productive. Many systems can con�gure a
maximum lifetime for a password. Interestingly, many systems also have a minimum lifetime for a
password. This has come about to prevent users from reusing a previous password when prompted
to change their password after its maximum life has expired. The system keeps a history of, say,
eight most recently used passwords for each user. When asked to change the current password the
user can change it eight times to
ush the history and then resume reuse of the same password.
The response is to disallow frequent changes to a user's password!

Passwords are often used to generate cryptographic keys which are further used for encryption
or other cryptographic transformations. Encrypting data with keys derived from passwords is
vulnerable to so-called dictionary attacks. Suppose the attacker has access to known plaintext,
that is the attacker knows the encrypted and plaintext versions of data which was encrypted using
a key derived from a user's password. Instead of trying all possible keys to �nd the right one, the
attacker instead tries keys generated from a list of, say, twenty thousand likely passwords (known
as a dictionary). The former search is usually computationally infeasible while the latter can be
accomplished in a matter of hours using commonplace workstations. These attacks have been
frequently demonstrated and are a very real threat.

Operating systems typically store a user's password by using it as a key to some cryptographic
transformation. Access to the so-called encrypted passwords provides the attacker the necessary
known plaintext for a dictionary attack. The Unix system actually makes these encrypted passwords
available in a publicly readable �le. Recent versions of Unix are increasingly using shadow passwords
by which this data is stored in �les private to the authentication system. In networked systems
known plaintext is often visible in the network authentications protocols.

Poor passwords can be detected by o�-line dictionary attacks conducted by the security admin-
istrators. Proactive password checking can be applied when a user changes his or her password.
This can be achieved by looking up a large dictionary. Such dictionaries can be very big (tens
of megabytes) and may need to be replicated at multiple locations. They can themselves pose a

3

security hazard. Statistical techniques for proactive password checking have been proposed as an
alternative [DG93].

Selecting random passwords for users is not user friendly and also poses a password distribution
problem. Some systems generate pronounceable passwords for users because these are easier to
remember. In principle this is a sound idea but some of the earlier recommended methods for
generating pronounceable passwords have been shown to be insecure [GD94]. It is also possible
to generate a sequence of one-time passwords which are used one-by-one in sequence without ever
being reused. Human beings are not expected to remember these and must instead write them
down or store them on laptop hard disks or removable media.

2.2 Token-Based Authentication

A token is a credit-card size device that the user carries around. Each token has a unique private
cryptographic key stored within it, used to establish the token's identity via a challenge-response
handshake. The party establishing the authentication issues a challenge to which a response is
computed using the token's private key. The challenge is keyed into the token by the user and the
response displayed by the token is again keyed by the user into the workstation to be communicated
to the authenticating party. Alternately, the workstation can be equipped with a reader that can
directly interact with the token eliminating the need for the user to key in the challenge and
response. Sometimes the challenge is implicitly taken to be the current time, so only the response
needs to returned (this assumes appropriately accurate synchronization of clocks).

The private key should never leave the token. Attempts to break the token open to recover
the key should cause the key to be destroyed. Achieving this is in face of a determined adversary
is a di�cult task. Use of the token itself requires authentication, otherwise the token can be
surreptitiously used by an intruder or stolen and used prior to discovery of the theft. User-to-token
authentication is usually based on passwords in the form of a PIN (personal identi�cation number).

Token-based authentication is much stronger than password-based authentication, and is often
called strong as opposed to weak authentication. However, it is the token that is authenticated
rather than the user. The token can be shared with other users by providing the PIN, so it is
vulnerable to loss of accountability. Of course, only one user at a time can physically possess the
token.

Tokens can used secret key or public key cryptosystems. With secret key systems the computer
authenticating the token needs to know the secret key that is embedded in the token. This presents
the usual key distribution problem for secret-key cryptography. With public-key cryptography a
token can be authenticated by a computer which has had no prior contact with the user's token.
The public key used to verify the response to a challenge can be obtained used public-key cer-
ti�cates. Public-key based tokens have scalability advantages that in the long run should make
them the dominant technique for authentication in large systems. However, the computational and
bandwidth requirements are generally greater for public versus secret key systems. Token-based
authentication is a technical reality today, but it still lacks major market penetration and does cost
money.

2.3 Biometric Authentication

Biometric authentication has been used for some time for high-end applications. The biometric
signature should be di�erent every time, for example, voice-print check of a di�erent challenge
phrase on each occasion. Alternately, the biometric signature should require an active input, for
example, dynamics of handwritten signatures. Simply repeating the same phrase every time or using

4

a �xed signature such as a �ngerprint is vulnerable to replay attacks. Biometric authentication
often requires cumbersome equipment which is best suited for �xed installations such as entry into
a building or room.

Technically the best combination would be user-to-token biometric authentication, followed by
mutual cryptographic authentication between the token and system services. This combination
may emerge sooner than one might imagine. Deployment of such technology in a large scale is
certain to raise social and political debate. Unforgeable biometric authentication could result in
signi�cant loss of privacy for individuals. Some of the privacy issues may have technical solutions
while others may be inherently impossible.

2.4 Authentication in Distributed Systems

In distributed systems authentication is required repeatedly as the user uses multiple services. Each
service needs authentication, and we might want mutual authentication in each case. In practice
this process starts with a user supplying a password to the workstation which can then act on
the user's behalf. This password should never be disclosed in plaintext on the network. Typically
the password is converted to a cryptographic key which is then used to perform challenge-response
authentication with servers in the system. To minimize exposure of the user password, and the
long-term key derived from it, the password is converted into a short-term key which is retained
on the workstation while the long-term user secrets are discarded. In e�ect these systems use the
desktop workstation as a \token" for authentication with the rest of the network. Trojan Horse
software in the workstation can, of course, compromise the user's long-term secrets.

The basic principles outlined above have been implemented in actual systems in an amazing
variety of ways. Many of the early implementations are susceptible to dictionary attacks. Now
that the general nature and ease of a dictionary attack are understood we are seeing systems which
avoid these attacks or at least attempt to make them more di�cult. For details on actual systems
we refer the reader to [KPS95, Neu94, WL92].

3 Access Control

In this section we describe access control. We introduce the concept of an access matrix and
discuss implementation alternatives. Then we explain discretionary, mandatory and role-based
access control policies. Finally, we discuss issues in administration of authorizations.

3.1 The Access Control Matrix

Security practitioners have developed a number of abstractions over the years in dealing with access
control. Perhaps the most fundamental of these is the realization that all resources controlled by a
computer system can be represented by data stored in objects (e.g., �les). Therefore protection of
objects is the crucial requirement, which in turn facilitates protection of other resources controlled
via the computer system. (Of course, these resources must also be physically protected so they
cannot be manipulated directly bypassing the access controls of the computer system.)

Activity in the system is initiated by entities known as subjects. Subjects are typically users or
programs executing on behalf of users. A user may sign on to the system as di�erent subjects on
di�erent occasions, depending on the privileges the users wishes to exercise in a given session. For
example, a user working on two di�erent projects may sign on for purpose of working on one project
or the other. We then have two subjects corresponding to this user, depending on the project the
user is currently working on.

5

A subtle point that is often overlooked is that subjects can themselves be objects. A subject can
create additional subjects in order to accomplish its task. The children subjects may be executing
on various computers in a network. The parent subject will usually be able to suspend or terminate
its children as appropriate. The fact that subjects can be objects corresponds to the observation
that the initiator of one operation can be the target of another. (In network parlance subjects are
often called initiators, and objects called targets.)

The subject-object distinction is basic to access control. Subjects initiate actions or operations
on objects. These actions are permitted or denied in accord with the authorizations established in
the system. Authorization is expressed in terms of access rights or access modes. The meaning of
access rights depends upon the object in question. For �les the typical access rights are Read, Write,
Execute and Own. The meaning of the �rst three of these is self evident. Ownership is concerned
with controlling who can change the access permissions for the �le. An object such as a bank
account may have access rights Inquiry, Credit and Debit corresponding to the basic operations
that can be performed on an account. These operations would be implemented by application
programs, whereas for a �le the operations would typically be provided by the Operating System.

The access matrix is a conceptual model which speci�es the rights that each subject possesses
for each object. There is a row in this matrix for each subject, and a column for each object.
Each cell of the matrix speci�es the access authorized for the subject in the row to the object in
the column. The task of access control is to ensure that only those operations authorized by the
access matrix actually get executed. This is achieved by means of a reference monitor, which is
responsible for mediating all attempted operations by subjects on objects. Note that the access
matrix model clearly separates the problem of authentication from that of authorization.

An example of an access matrix is shown in �gure 2, where the rights R and W denote read and
write respectively, and the other rights are as discussed above. The subjects shown here are John,
Alice and Bob. There are four �les and two accounts. This matrix speci�es that, for example, John
is the owner of File 3 and can read and write that �le, but John has no access to File 2 or File 4.
The precise meaning of ownership varies from one system to another. Usually the owner of a �le
is authorized to grant other users access to the �le, as well as revoke access. Since John owns File
1, he can give Alice the R right and Bob the R and W rights as shown in �gure 2. John can later
revoke one or more of these rights at his discretion.

The access rights for the accounts illustrate how access can be controlled in terms of abstract
operations implemented by application programs. The Inquiry operation is similar to read in that
it retrieves information but does not change it. Both the Credit and Debit operations will involve
reading the previous account balance, adjusting it as appropriate and writing it back. The programs
which implement these operations require read and write access to the account data. Users, however,
are not allowed to read and write the account object directly. They can manipulate account objects
only indirectly via application programs which implement the Debit and Credit operations.

Also note that there is no Own right for accounts. Objects such as bank accounts do not really
have an owner who can determine the access of other subjects to the account. Clearly the user who
establishes the account at the bank should not be the one to decide who can access the account.
Within the bank di�erent o�cials can access the account on basis of their job functions in the
organization.

3.2 Implementation Approaches

In a large system the access matrix will be enormous in size, and most of its cells are likely to be
empty. Accordingly the access matrix is very rarely implemented as a matrix. We now discuss
some common approaches to implementing the access matrix in practical systems.

6

3.2.1 Access Control Lists

A popular approach to implementing the access matrix is by means of Access Control Lists (ACLs).
Each object is associated with an ACL, indicating for each subject in the system the accesses the
subject is authorized to execute on the object. This approach corresponds to storing the matrix
by columns. ACLs corresponding to the access matrix of �gure 2 are shown in �gure 3. Essentially
the access matrix column for File 1 is stored in association with File 1, and so on.

By looking at an object's ACL it is easy to determine which modes of access subjects are
currently authorized for that object. In other words ACLs provide for convenient access review
with respect to an object. It is also easy to revoke all access to an object by replacing the existing
ACL with an empty one. On the other hand determining all the accesses that a subject has is
di�cult in an ACL-based system. It is necessary to examine the ACL of every object in the system
to do access review with respect to a subject. Similarly if all accesses of a subject need to be
revoked all ACLs must be visited one by one. (In practice revocation of all accesses of a subject
is often done by deleting the user account corresponding to that subject. This is acceptable if a
user is leaving an organization. However, if a user is reassigned within the organization it would be
more convenient to retain the account and change its privileges to re
ect the changed assignment
of the user.)

Many systems allow group names to occur in ACLs. For example, an entry such as (ISSE, R)
can authorize all members of the ISSE group to read a �le. Several popular Operating Systems,
such as Unix and VMS, implement an abbreviated form of ACLs in which a small number, often
only one or two, group names can occur in the ACL. Individual subject names are not allowed.
With this approach the ACL has a small �xed size so it can be stored using a few bits associated
with the �le. At the other extreme there are a number of access control packages which allow
complicated rules in ACLs to limit when and how the access can be invoked. These rules can be
applied to individual users or to all users who match a pattern de�ned in terms of user names or
other user attributes.

3.2.2 Capabilities

Capabilities are a dual approach to ACLs. Each subject is associated with a list, called the capability
list, indicating for each object in the system, the accesses the subject is authorized to execute on the
object. This approach corresponds to storing the access matrix by rows. Figure 4 shows capability
lists for the �les in �gure 2. In a capability list approach it is easy to review all accesses that
a subject is authorized to perform, by simply examining the subject's capability list. However,
determination of all subjects who can access a particular object requires examination of each and
every subject's capability list. A number of capability-based computer systems were developed in
the 1970s, but did not prove to be commercially successful. Modern operating systems typically
take the ACL-based approach.

It is possible to combine ACLs and capabilities. Possession of a capability is su�cient for a
subject to obtain access authorized by that capability. In a distributed system this approach has
the advantage that repeated authentication of the subject is not required. This allows a subject to
be authenticated once, obtain its capabilities and then present these capabilities to obtain services
from various servers in the system. Each server may further use ACLs to provide �ner-grained
access control.

7

3.2.3 Authorization Relations

We have seen that ACL- and capability-based approaches have dual advantages and disadvantages
with respect to access review. There are representations of the access matrix which do not favor
one aspect of access review over the other. For example, the access matrix can be represented by
an authorization relation (or table) as shown in �gure 5. Each row, or tuple, of this table speci�es
one access right of a subject to an object. Thus, John's accesses to File 1 require three rows. If
this table is sorted by subject, we get the e�ect of capability lists. If it is sorted by object we get
the e�ect of ACLs. Relational database management systems typically use such a representation.

3.3 Access Control Policies

In access control systems a distinction is generally made between policies and mechanisms. Policies
are high level guidelines which determine how accesses are controlled and access decisions deter-
mined. Mechanisms are low level software and hardware functions which can be con�gured to
implement a policy. Security researchers have sought to develop access control mechanisms which
are largely independent of the policy for which they could be used. This is a desirable goal to allow
reuse of mechanisms to serve a variety of security purposes. Often, the same mechanisms can be
used in support of secrecy, integrity or availability objectives. On the other hand, sometimes the
policy alternatives are so many and diverse that system implementors feel compelled choose one in
preference to the others.

In general, there do not exist policies which are \better" than others. Rather there exist policies
which ensure more protection than others. However, not all systems have the same protection
requirements. Policies suitable for a given system may not be suitable for another. For instance,
very strict access control policies, which are crucial to some systems may be inappropriate for
environments where users require greater
exibility. The choice of access control policy depends on
the particular characteristics of the environment to be protected.

We will now discuss three di�erent policies which commonly occur in computer systems as
follows:

� classical discretionary policies,

� classical mandatory policies, and

� the emerging role-based policies.

We have added the quali�er \classical" to the �rst two of these to re
ect the fact that these have
been recognized by security researchers and practitioners for a long time. However, in recent years
there is increasing consensus that there are legitimate policies which have aspects of both of these.
Role-based policies are an example of this fact.

It should be noted that access control policies are not necessarily exclusive. Di�erent policies
can be combined to provide a more suitable protection system. This is indicated in �gure 6. Each
of the three inner circles represents a policy which allows a subset of all possible accesses. When
the policies are combined only the intersection of their accesses is allowed. Such combination of
policies is relatively straightforward so long as there are no con
icts where one policy asserts that
a particular access must be allowed while another one prohibits it. Such con
icts between policies
need to be reconciled by negotiations at an appropriate level of management.

8

3.3.1 Classical Discretionary Policies

Discretionary protection policies govern the access of users to the information on the basis of the
user's identity and authorizations (or rules) that specify, for each user (or group of users) and each
object in the system, the access modes (e.g., read, write, or execute) the user is allowed on the
object. Each request of a user to access an object is checked against the speci�ed authorizations.
If there exists an authorization stating that the user can access the object in the speci�c mode, the
access is granted, otherwise it is denied.

The
exibility of discretionary policies makes them suitable for a variety of systems and appli-
cations. For these reasons, they have been widely used in a variety of implementations, especially
in the commercial and industrial environments.

However, discretionary access control policies have the drawback that they do not provide real
assurance on the
ow of information in a system. It is easy to bypass the access restrictions stated
through the authorizations. For example, a user who is able to read data can pass it to other users
not authorized to read it without the cognizance of the owner. The reason is that discretionary
policies do not impose any restriction on the usage of information by a user once the user has got
it, i.e., dissemination of information is not controlled. By contrast dissemination of information
is controlled in mandatory systems by preventing
ow of information from high-level objects to
low-level objects.

Discretionary access control policies based on explicitly speci�ed authorization are said to be
closed, in that the default decision of the reference monitor is denial. Similar policies, called open
policies, could also be applied by specifying denials instead of permissions. In this case, for each user
and each object of the system, the access modes the user is forbidden on the object are speci�ed.
Each access request by a user is checked against the speci�ed (negative) authorizations and granted
only if no authorizations denying the access exist. The use of positive and negative authorizations
can be combined, allowing the speci�cation of both the accesses to be authorized as well as the
accesses to be denied to the users. The interaction of positive and negative authorizations can
become extremely complicated [BSJ93].

3.3.2 Classical Mandatory Policies

Mandatory policies govern access on the basis of classi�cation of subjects and objects in the system.
Each user and each object in the system is assigned a security level. The security level associated
with an object re
ects the sensitivity of the information contained in the object, i.e, the potential
damage which could result from unauthorized disclosure of the information. The security level
associated with a user, also called clearance, re
ects the user's trustworthiness not to disclose
sensitive information to users not cleared to see it. In the simplest case, the security level is an
element of a hierarchical ordered set. In the military and civilian government arenas, the hierarchical
set generally consists of Top Secret (TS), Secret (S), Con�dential (C), and Unclassi�ed (U), where
TS > S > C > U. Each security level is said to dominate itself and all others below it in this
hierarchy.

Access to an object by a subject is granted only if some relationship (depending on the type of
access) is satis�ed between the security levels associated with the two. In particular, the following
two principles are required to hold.

Read down A subject's clearance must dominate the security level of the object being read.

Write up A subject's clearance must be dominated by the security level of the object being
written.

9

Satisfaction of these principles prevents information in high level objects (i.e., more sensitive) to

ow to objects at lower levels. The e�ect of these rules is illustrated in �gure 7. In such a system
information can only
ow upwards or within the same security class.

It is important to understand the relationship between users and subjects in this context. Let
us say that the human user Jane is cleared to S, and assume she always signs on to the system
as an S subject (i.e., a subject with clearance S). Jane's subjects are prevented from reading TS
objects by the read-down rule. The write-up rule, however, has two aspects that seem at �rst sight
contrary to expectation.

� Firstly, Jane's S subjects can write a TS object (even though they cannot read it). In
particular, they can overwrite existing TS data and therefore destroy it. Due to this integrity
concern, many systems for mandatory access control do not allow write up; but limit writing
to the same level as the subject. At the same time write up does allow Jane's S subjects to
send electronic mail to TS subjects, and can have its bene�ts.

� Secondly, Jane's S subjects cannot write C or U data. This means, for example, that Jane
can never send electronic mail to C or U users. This is contrary to what happens in the
paper world, where S users can write memos to C and U users. This seeming contradiction is
easily eliminated by allowing Jane to sign to the system as a C, or U, subject as appropriate.
During these sessions she can send electronic mail to C or, U and C, subjects respectively.

In other words a user can sign on to the system as a subject at any level dominated by the user's
clearance. Why then bother to impose the write-up rule? The main reason is to prevent malicious
software from leaking secrets downward from S to U. Users are trusted not to leak such information,
but the programs they execute do not merit the same degree of trust. For example, when Jane
signs onto the system at U level her subjects cannot read S objects, and thereby cannot leak data
from S to U. The write-up rule also prevents users from inadvertently leaking information from
high to low.

In additional to hierarchical security levels, categories (e.g., Crypto, NATO, Nuclear) can also
be associated with objects and subjects. In this case the classi�cation labels associated with each
subject and each object consists of a pair composed of a security level and a set of categories. The
set of categories associated with a user re
ect the speci�c areas in which the user operates. The set
of categories associated with an object re
ect the area to which information contained in objects are
referred. The consideration of categories provides a �ner grained security classi�cation. In military
parlance categories enforce restriction on the basis of the need-to-know principle, i.e., a subject
should be only given those accesses which are required to carry out the subject's responsibilities.

Mandatory access control can as well be applied for the protection of information integrity. For
example, the integrity levels could be Crucial (C), Important (I), and Unknown (U). The integrity
level associated with an object re
ects the degree of trust that can be placed in the information
stored in the object, and the potential damage that could result from unauthorized modi�cation
of the information. The integrity level associated with a user re
ects the user's trustworthiness for
inserting, modifying or deleting data and programs at that level. Principles similar to those stated
for secrecy are required to hold, as follows.

Read up A subject's integrity level must be dominated by the integrity level of the object being
read.

Write down A subject's integrity level must dominate the integrity level of the object being
written.

10

Satisfaction of these principles safeguard integrity by preventing information stored in low objects
(and therefore less reliable) to
ow to high objects. This is illustrated in �gure 8. Controlling
information
ow in this manner is but one aspect of achieving integrity. Integrity in general
requires additional mechanisms, as discussed in [CFMS94, San94].

Note that the only di�erence between �gures 7 and 8 is the direction of information
ow, being
bottom to top in the former case and top to bottom in the latter. In other words both cases are
concerned with one-directional information
ow. The essence of classical mandatory controls is
one-directional information
ow in a lattice of security labels. For further discussion on this topic
see [San93].

3.3.3 Role-Based Policies

The discretionary and mandatory policies discussed above have been recognized in o�cial standards,
notably the so-called Orange Book of the U.S. Department of Defense. A good introduction to the
Orange Book and its evaluation procedures is given in [Cho92].

There has been a strong feeling among security researchers and practitioners that many practical
requirements are not covered by these classical discretionary and mandatory policies. Mandatory
policies rise from rigid environments, like those of the military. Discretionary policies rise from
cooperative yet autonomous requirements, like those of academic researchers. Neither requirement
satis�es the needs of most commercial enterprises. Orange Book discretionary policy is too weak
for e�ective control of information assets, whereas Orange Book mandatory policy is focused on the
US Government policy for con�dentiality of classi�ed information. (In practice the military often
�nds Orange Book mandatory policies to be too rigid and subverts them.)

Several alternatives to classical discretionary and mandatory policies have been proposed. These
policies allow the speci�cation of authorizations to be granted to users (or groups) on objects like
in the discretionary approach, together with the possibility of specifying restrictions (like in the
mandatory approach) on the assignment or on the use of such authorizations. One of the promising
avenues which is receiving growing attention is that of role-based access control [FK92, SCFY96].

Role-based policies regulate the access of users to the information on the basis of the activities
the users execute in the system. Role based policies require the identi�cation of roles in the
system. A role can be de�ned as a set of actions and responsibilities associated with a particular
working activity. Then, instead of specifying all the accesses each users is allowed to execute,
access authorizations on objects are speci�ed for roles. Users are given authorizations to adopt
roles. A recent study by NIST con�rms that roles are a useful approach for many commercial and
government organizations [FGL93].

The user playing a role is allowed to execute all accesses for which the role is authorized. In
general a user can take on di�erent roles on di�erent occasions. Also the same role can be played by
several users, perhaps simultaneously. Some proposals for role-based access control allow a user to
exercise multiple roles at the same time. Other proposals limit the user to only one role at a time,
or recognize that some roles can be jointly exercised while others must be adopted in exclusion to
one another. As yet there are no standards in this arena, so it is likely that di�erent approaches
will be pursued in di�erent systems.

The role-based approach has several advantages. Some of these are discussed below.

� Authorization management: Role-based policies bene�t from a logical independence in
specifying user authorizations by breaking this task into two parts, one which assigns users to
roles and one which assigns access rights for objects to roles. This greatly simpli�es security
management. For instance, suppose a user responsibilities change, say, due to a promotion.

11

The user's current roles can be taken away and new roles assigned as appropriate for the
new responsibilities. If all authorization is directly between users and objects, it becomes
necessary to revoke all existing access rights of the user and assign new ones. This is a
cumbersome and time-consuming task.

� Hierarchical roles: In many applications there is a natural hierarchy of roles, based on
the familiar principles of generalization and specialization. An examples is shown in �g-
ure 9. Here the roles of hardware and software engineer are specializations of the engineer
role. A user assigned to the role of software engineer (or hardware engineer) will also inherit
privileges and permissions assigned to the more general role of engineer. The role of super-
vising engineer similarly inherits privileges and permissions from both software-engineer and
hardware-engineer roles. Hierarchical roles further simplify authorization management.

� Least privilege: Roles allow a user to sign on with the least privilege required for the
particular task at hand. Users authorized to powerful roles do not need to exercise them until
those privileges are actually needed. This minimizes the danger of damage due to inadvertent
errors or by intruders masquerading as legitimate users.

� Separation of duties: Separation of duties refer to the principle that no user should be given
enough privileges to misuse the system on their own. For example, the person authorizing
a paycheck should not also be the one who can prepare them. Separation of duties can be
enforced either statically (by de�ning con
icting roles, i.e., roles which cannot be executed
by the same user) or dynamically (by enforcing the control at access time). An example of
dynamic separation of duty is the two-person rule. The �rst user to execute a two-person
operation can be any authorized user, whereas the second user can be any authorized user
di�erent from the �rst.

� Object classes: Role-based policies provides a classi�cation of users according to the activ-
ities they execute. Analogously, a classi�cation should be provided for objects. For example,
generally a clerk will need to have access to the bank accounts, and a secretary will have ac-
cess to the letters and memos (or some subset of them). Objects could be classi�ed according
to their type (e.g., letters, manuals) or to their application area (e.g., commercial letters, ad-
vertising letters). Access authorizations of roles should then be on the basis of object classes,
not speci�c objects. For example, a secretary role can be given the authorization to read
and write the entire class of letters, instead of giving it explicit authorization for each single
letter. This approach has the advantage of making authorization administration much easier
and better controlled. Moreover, the accesses authorized on each object are automatically
determined according to the type of the object without need of specifying authorizations upon
each object creation.

3.4 Administration of Authorization

Administrative policies determine who is authorized to modify the allowed accesses. This is one of
the most important, and least understood, aspects of access controls.

In mandatory access control the allowed accesses are determined entirely on basis of the se-
curity classi�cation of subjects and objects. Security levels are assigned to users by the security
administrator. Security levels of objects are determined by the system on the basis of the levels
of the users creating them. The security administrator is typically the only one who can change
security levels of subjects or objects. The administrative policy is therefore very simple.

12

Discretionary access control permits a wide range of administrative policies. Some of these are
described below.

� Centralized: A single authorizer (or group) is allowed to grant and revoke authorizations
to the users.

� Hierarchical: A central authorizer is responsible for assigning administrative responsibilities
to other administrators. The administrators can then grant and revoke access authorizations
to the users of the system. Hierarchical administration can be applied, for example, according
to the organization chart.

� Cooperative: Special authorizations on given resources cannot be granted by a single au-
thorizer but needs cooperation of several authorizers.

� Ownership: A user is considered the owner of the objects he/she creates. The owner can
grant and revoke access rights for other users to that object.

� Decentralized: In decentralized administration the owner of an object can also grant other
users the privilege of administering authorizations on the object.

Within each of these there are many possible variations.
Role-based access control has a similar wide range of possible administrative policies. In this

case roles can also be used to manage and control the administrative mechanisms.
Delegation of administrative authority is an important area in which existing access control

systems are de�cient. In large distributed systems centralized administration of access rights is
infeasible. Some existing systems allow administrative authority for a speci�ed subset of the objects
to be delegated by the central security administrator to other security administrators. For example,
authority to administer objects in a particular region can be granted to the regional security
administrator. This allows delegation of administrative authority in a selective piecemeal manner.
However, there is a dimension of selectivity that is largely ignored in existing systems. For instance,
it may be desirable that the regional security administrator be limited to granting access to these
objects only to employees who work in that region. Control over the regional administrators can
be centrally administered, but they can have considerable autonomy within their regions. This
process of delegation can be repeated within each region to set up sub-regions and so on.

4 Auditing and Intrusion Detection

Auditing consists of examination of the history of events in a system in order to determine whether
and how security violations have occurred or been attempted. Auditing requires registration or
logging of users requests and activities for later examination. Audit data is recorded in an audit

trail , or audit log. The nature and format of this data varies from system to system.
Information which should be recorded for each event includes the subject requesting the access,

the object to be accessed, the operation requested, the time of the request, perhaps the location
from which the requested originated, the response of the access control system, the amount of
resources (CPU time, I/O, memory, etc.) used, whether the operation succeeded or, if not, the
reason for the failure, and so on.

In particular actions requested by privileged users, such as the system and the security adminis-
trators, should be logged. This serves as a deterrent against misuse of of powerful privileges by the
administrators, and also as a means for detecting operating must be controlled (the old problem of

13

\guarding the guardian"). The second reason is that it allows to control penetrations in which the
attacker gains a privileged status.

Audit data can become voluminous very quickly and searching for security violations in such
a mass of data is a di�cult task. Of course, audit data cannot reveal all violations because some
may not be apparent in even a very careful analysis of audit records. Sophisticated penetrators
can spread out their activities over a relatively long period of time thus making detection more
di�cult. In some cases, audit analysis is executed only if violations are suspected or their e�ects are
visible since the system shows an anomalous or erroneous behavior, such as continuous insu�cient
memory, slow processing, or non accessibility of certain �les. Even in this case, often, only a limited
amount of audit data, namely those which may be connected with the suspected violation, are
examined. Sometimes the �rst clue to a security violation is some real world event which indicates
that information has been compromised. The may happen long after the computer penetration
occurred. Similarly, security violations may result in Trojan Horses or viruses being implanted
whose activity may not be trigerred long after the original event.

4.1 Intrusion Detection Systems

Recent research has focussed on the development of automated tools to help or even to carry out
auditing controls. Automated tools can be used to screen and reduce audit data that needs to be
reviewed by humans. These tools can also organize audit data to produce summaries and measures
needed in the analysis. This data reduction process can, for instance, produce short summaries of
user behaviors, anomalous events, or security incidents. The auditors can then to go over summaries
instead than examining each single event recorded. Another class of automated tools is represented
by the so-called intrusion detection systems. The purpose of these tools is to not only to automate
audit data acquisition and reduction but also its analysis. Some of the more ambitious e�orts
attempt to perform intrusion detection in real time.

Intrusion detection systems can be classi�ed as passive or active. Passive systems, generally
operating o�-line, analyze the audit data and bring possible intrusions or violations to the attention
of the auditor who then takes appropriate actions (see Figure 10). Active systems analyze audit
data in real time. Besides bringing violations to the attention of the auditor, these systems may
take immediate protective response on the system (see Figure 11). The protective response can
be executed post-facto, after the violation has occurred, or preemptively, to avoid the violation
being perpetrated to complete. This latter possibility depends on the ability of the system to
foresee violations. Protective responses include killing the suspected process, disconnecting the
user, disabling privileges, or disabling user accounts. The response may be determined in total
autonomy by the intrusion detection system or through interactions with the auditors.

Di�erent approaches have been proposed for building intrusion detection systems. No single
approach can be considered satisfactory with respect to di�erent kinds of penetrations and violations
that can occur. Each approach is appropriate for detecting a speci�c subset of violations. Moreover,
each approach presents some pros and cons determined by the violations that can or cannot be
controlled and by the amount and complexity of information necessary for its application. We now
discuss the main intrusion detection approaches that have been attempted.

4.1.1 Threshold-Based Approach

The threshold-based approach is based on the assumption that the exploitation of system vul-
nerabilities involves abnormal use of the system itself. For instance, an attempt to break into a
system can require trying several user accounts and passwords. An attempt to discover protected

14

information can imply several, often denied, browsing operations through protected directories. A
process infected by a virus can require an abnormal amount of memory or CPU resources.

Threshold-based systems typically control occurrences of speci�c events over a given period of
time with respect to prede�ned allowable thresholds established by the security o�cer. For instance,
more than three unsuccessful attempts to login to a given account with the wrong password may
indicate an attempt to penetrate that account. Multiple unsuccessful attempts to log in the system,
using di�erent accounts, concentrated in a short period of time, may suggest an attempt to break
in.

Thresholds can also be established with respect to authorized operations to detect improper use
of resources. For instance, a threshold can specify that print requests totaling more than a certain
number of pages a day coming from the administrative o�ce is to be considered suspicious. This
misuse can be symptomatic of di�erent kinds of violations such as the relatively benign misuse of
the resource for personal use or a more serious attempt to print out working data for disclosure to
the competition.

The threshold-based approach is limited by the fact that many violations occur without implying
overuse of system resources. A further drawback of this approach is that it requires prior knowledge
of how violations are re
ected in terms of abnormal system use. Determining such connections and
establishing appropriate thresholds is not always possible.

4.1.2 Anomaly-Based Approach

Like threshold-based controls, anomaly-based controls are based on the assumption that violations
involve abnormal use of the system. However, while threshold-based systems de�ne abnormal use
with respect to pre-speci�ed �xed acceptable thresholds, anomaly-based systems de�ne abnormal
use as a use that is signi�cantly di�erent from that normally observed. In this approach, the
intrusion detection system observes the behavior of the users in the target system and de�ne pro�les,
i.e., statistical measures, re
ecting the normal behavior of the users. Pro�les can be de�ned with
respect to di�erent aspects to be controlled such as the number of events in a user session, the time
elapsed between events in a user session, the amount of resources consumed over a certain period
of time or during execution of certain programs.

Construction of pro�les from raw audit data is guided by rules that can be speci�ed with respect
to single users, objects, or actions, as well as to classes of these. For instance, rules can state that
pro�les should be de�ned with respect to the number of pages printed every day by each user in the
administration o�ce, the number of resources per session and per day consumed by each user, the
time elapsed between two login sessions for each single user, some \habit" measures such as the time
and the location from which a user generally logs in and the time the connections last. As users
operate in the system, the intrusion detection system learns their behaviors with respect to the
di�erent pro�les thus de�ning what is \normal," and adapting the pro�les to changes. Whenever
a signi�cant deviation occurs for a pro�le, an alarm is raised.

Statistical models that can be used include the operational model , the mean and standard

deviation model , and time series model . With the operational model an anomaly is raised when an
observation exceeds a given acceptable threshold. This is similar to the threshold-based approach.
With the mean and standard deviation model an anomaly occurs when the observation falls outside
an allowed con�dence interval around the mean. For instance, an alarm can be raised if the CPU
time consumed during a session for a user falls much below or above the CPU time generally
consumed by the same user. With the time series model an anomaly is raised when an event occurs
at a given time at which the probability of its occurring is too low. For instance, a remote night-
hour login request by a user who has never connected o�-hours or from outside the building may

15

be considered suspicious.
The main advantage of the anomaly detection approach is that it does not require any a priori

knowledge of the target system or of possible
aws from which the system may su�er. However, like
the threshold-based approach, it can only detect violations that involve anomalous use. Moreover,
some legitimate users may have a very erratic behavior (e.g., logging on and o� at di�erent hours
or from di�erent locations varying their activity daily). For such users no normal behavior can
be actually established and misuse by them as well as by masqueraders exploiting their accounts
would go undetected. The approach is also vulnerable from insiders who, knowing that behavior
pro�les are being de�ned, may either behave in a \bad" way from the beginning or slowly vary
their behavior, going from \good" to \bad", thus convincing the system that the \bad" behavior
is normal.

4.1.3 Rule-Based Approach

In the rule-based approach, rules are used to analyze audit data for suspicious behavior, indepen-
dently from users' behavioral patterns. Rules describe what is suspicious on the basis of known past
intrusions or known system vulnerabilities. This approach is generally enforced by means of expert
systems encoding knowledge of the security experts about past intrusions in terms of sequences of
events or observable properties characterizing violations.

For instance, a rule can specify that a sequence of browsing operations (e.g., cd, ls, and more

commands in a Unix environment) coming o�-hours from a remote location may be symptomatic of
an intrusion. Rules can also identify suspicious sequences of actions. For example the withdrawal
of a large amount of money from an account and its deposit back few days later may be considered
suspicious.

The rule-based approach can detect violations that do not necessarily imply abnormal use of
resources. Its main limitation is that the expert knowledge encoded in the rules encompasses only
known system vulnerabilities and attack scenarios or suspicious events. The system can therefore
be penetrated by attackers employing new techniques.

4.1.4 Model-Based Reasoning Approach

The model-based reasoning approach is based on the de�nition, by the security o�cers, of models
of proscribed intrusion activities [GL91]. Proscribed activities are expressed by means of sequences
of user behaviors (single events or observable measures), called scenarios.

Each component of a scenario is therefore a high-level observation on the system and does not
necessarily correspond to an audit record (which contains information at a lower level of speci�ca-
tion). From these high-level speci�cations, the intrusion detection system generates, on the basis
of speci�ed rules, the corresponding sequences of actions at the level of the audit records. Each
audit record produced on the observation of the system is controlled against the speci�ed scenarios
to determine if a violation is being carried out. Audit data reduction and analysis can be modeled
in such a way that only events relevant to speci�c scenarios corresponding to intrusions probably
being carried out are examined. When the probability of a given scenario being followed passes a
speci�ed threshold an alarm is raised informing the auditor of the suspected violation.

The basis of this approach is essentially the same as the rule-based approach, the main di�erence
being the way in which controls are speci�ed. While in the rule-based approach the security o�cer
must explicitly specify the control rules in terms of the audit data, in the model-based approach
the security o�cer only speci�es the scenario in terms of high-level observable properties. This
constitutes the main advantage of this approach which allows the security o�cer to reason in terms

16

of high-level abstractions rather than audit records. It is the task of the system to translate the
scenarios into corresponding rules governing data reduction and analysis.

Like the rule-based approach, this approach can control only violations whose perpetration sce-
nario (i.e., actions necessary to ful�ll them) are known. By contrast, violations exploiting unknown
vulnerabilities or not yet tried cannot be detected.

4.1.5 State Transition-Based Approach

In the state transition-based approach a violation is modeled as a sequence of actions starting
from an initial state to a �nal compromised state [IKP95]. A state is a snapshot of the target
system representing the values of all volatile, semi-permanent, and permanent memory locations.
Between the initial and the �nal states there are a number of intermediate states and corresponding
transitions. State transitions correspond to key actions necessary to carry out the violation. Actions
do not necessarily correspond to commands issued by users but instead refer to how state changes
within the system are achieved. A single command may produce multiple actions. Each state is
characterized as a set of assertions evaluating whether certain conditions are veri�ed in the system.
For instance, assertions can check whether a user is the owner of an object or has some privileges on
it, whether the user who caused the last two transitions is the same user, or whether the �le to which
an action is referred is a particular �le. Actions corresponding to state transitions are accesses to
�les (e.g., read, write, or execute operations) or actions modifying the permissions associated with
�les (e.g., changes of owners or authorizations) or some of the �les' characteristics (e.g., rename
operations).

As the users operate in the system, state transitions caused by them are determined. Whenever
a state transition causes a �nal compromised state to be reached, an alarm is raised. The state
transition-based approach can also be applied in a real-time active system to prevent users from
executing operations that would cause a transition to a compromised state.

The state transition-based approach is based on the same concepts as the rule-based approach
and therefore su�ers from the same limitations, i.e., only violations whose scenarios are known can
be detected. Moreover, it can be used to control only those violations that produce visible changes
to the system state. Like the model-based approach, the state transition-based approach provides
the advantage of requiring only high level speci�cations, leaving the system the task of mapping
state transitions into audit records and producing the corresponding control rules. Moreover, since
a state transition can be matched by di�erent operations at the audit record level, a single state
transition speci�cation can be used to represent di�erent variations of a violation scenario (i.e.,
involving di�erent operations but causing the same e�ects on the system).

4.1.6 Other Approaches

Other approaches have been proposed to complement authentication and access control to prevent
violations to happen or to detect their occurrence.

One approach consists in preventing, rather than detecting, intrusions. In this class are tester
programs that evaluate the system for common weaknesses often exploited by intruders and pass-
word checker programs that prevent users from choosing weak or obvious passwords (which may
represent an easy target for intruders).

Another approach consists in substituting known bugged commands, generally used as trap
doors by intruders, with programs that simulate the commands' execution while at the same time
sending an alarm to the attention of the auditor. Other trap programs for intruders are represented
by fake user accounts with \magic" passwords that raise an alarm when they are used.

17

Other approaches aim at detecting or preventing execution of Trojan Horses and viruses. So-
lutions adopted for this include integrity checking tools that search for unauthorized changes to
�les and mechanisms controlling program executions against speci�cations of allowable program
behavior in terms of operations and data
ows.

Yet another intrusion detection approach is represented by the so-called keystroke latencies
control. The idea behind the approach is that the elapsed time between keystrokes for regularly
typed strings is quite consistent for each user. Keystroke latencies control can be used to cope
against masqueraders. Moreover, they can also be used for authentication by controlling the time
elapsed between the keystrokes when typing the password.

More recent research has interested intrusion detection at the network level [MHL94]. Anal-
ysis is performed on network tra�c instead than on commands (or their corresponding low level
operations) issued on a system. Anomalies can then be determined, for example, on the basis of
the probability of the occurrence of the monitored connections being too low or on the basis of the
behavior of the connections. In particular, tra�c is controlled against pro�les of expected tra�c
speci�ed in terms of expected paths (i.e., connections between systems) and service pro�les.

4.2 Audit Control Issues

There are several issues that must be considered when employing intrusion detection techniques
to identify security violations. These issues arise independent of the speci�c intrusion detection
approach being utilized.

The task of generating audit records can be left to either the target system being monitored
or to the intrusion detection system. In the former case, the audit information generated by the
system may need to be converted to a form understandable by the intrusion detection system.
Many operating systems and database systems provide some audit information. However, this
information is often not appropriate for security controls since it may contain data not relevant
for detecting intrusions and omits details needed for identifying violations. Moreover, the audit
mechanism of the target system may itself be vulnerable to a penetrator who might be able to
bypass auditing or modify the audit log. Thus, a stronger and more appropriate audit trail might
be required for e�ective intrusion detection.

Another important issue that must be addressed is the retention of audit data. Since the quan-
tity of audit data generated every day can be enormous, policies must be speci�ed that determine
when historical data can be discarded.

Audit events can be recorded at di�erent granularity. Events can be recorded at the system
command level, at the level of each system call, at the application level, at the network level, or
at the level of each keystroke. Auditing at the application and command level has the advantage
of producing high level traces which can be more easily correlated, especially by humans (who
would get lost in low level details). However, the actual e�ect of the execution of a command
or application on the system may be not re
ected in the audit records, and therefore cannot be
analyzed. Moreover, auditing at such a high level can be circumvented by users exploiting alias
mechanisms or by directly issuing lower level commands. Recording at lower levels overcomes this
drawback at the price of maintaining a greater number of audit records (a single user command
may correspond to several low level operations) whose examination by humans (or automated tools)
becomes therefore more complicated.

Di�erent approaches can be taken with respect to the time at which the audit data is recorded
and, in case of real-time analysis, evaluated. For instance, the information that a user has required
execution of a process can be passed to the intrusion detection system at the time the execution is
required or at the time it is completed. The former approach has the advantage of allowing timely

18

detection and, therefore, a prompt response to stop the violation. The latter approach has the
advantage of providing more complete information about the event being monitored (information
on resources used or time elapsed can be provided only after the process has completed) and
therefore allows more complete analysis.

Audit data recording or analysis can be carried out indiscriminately or selectively, namely on
speci�c events, such as events concerning speci�c subjects, objects, or operations, or occurring at
particular time or situation. For instance, audit analysis can be performed only on operations on
objects containing sensitive information, on actions executed o�-hours (nights and weekends) or
from remote locations, on actions denied by the access control mechanisms, or on actions required
by mistrusted users.

Di�erent approaches can be taken with respect to the time at which audit control should be
performed. Real-time intrusion detection system enforce control in real time, i.e., analyze each
event at the time of its occurrence. Real-time analysis of data brings the great advantage of timely
detection of violations. However, due to the great amount of data to analyze and analysis to
perform, real-time controls are generally performed only on speci�c data, leaving a more thorough
analysis to be performed o�-line. Approaches that can be taken include the following.

� Period-driven. Audit control is executed periodically. For example, every night the audit
data produced during the working day are examined.

� Session-driven. Audit control on a user's session is performed when a close session command
is issued.

� Event-driven. Audit control is executed upon occurrence of certain events. For instance, if a
user attempts to enter a protected directory, audit over the user's previous and/or subsequent
actions are executed.

� Request-driven. Audit control is executed upon explicit request of the security o�cer.

The intrusion detection system may reside either on the target computer system or on a separate
machine. This latter solution is generally preferable since it does not impact the target systems
performance and protects audit information and control from attacks perpetrated on the target
system. On the other hand, audit data must be communicated to the intrusion detection machine
which itself could be a source of vulnerability.

A major issue in employing an intrusion detection system is privacy. Monitoring user behav-
ior, even if intended for defensive purposes, introduces a sort of \Big Brother" situation where
a centralized monitor is watching everybody's behavior. This may be considered an invasion of
individual privacy. It also raises concerns that audited information may be used improperly, for
example, as a means for controlling employee performances.

5 Conclusion

Authentication, access control and audit and intrusion detection together provide the foundations
for building systems which can store and process information with con�dentiality and integrity.
Authentication is the primary security service. Access control builds directly upon it. By and large
access control assumes authentication has been successfully accomplished. Strong authentication
supports good auditing because operations can then be traced to the user who caused them to
occur. There is a mutual interdependence between these three technologies which can be often
ignored by security practitioners and researchers. We need a coordinated approach which combines

19

the strong points of each of these technologies, rather than treating these as separate independent
disciplines.

Acknowledgment

The work of Ravi Sandhu is partly supported by grant CCR-9503560 from the National Science
Foundation and contract MDA904-94-C-61?? from the National Security Agency at George Mason
University.

References

[BSJ93] Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. Authorizations in relational
database management systems. In 1st ACM Conference on Computer and Communi-

cations Security, pages 130{139, Fairfax, VA, November 3-5 1993.

[CFMS94] S. Castano, M.G. Fugini, G. Martella, and P. Samarati. Database Security. Addison
Wesley, 1994.

[Cho92] Santosh Chokhani. Trusted products evaluation. Communications of the ACM,
35(7):64{76, July 1992.

[DG93] Chris Davies and Ravi Ganesan. Bapasswd: A new proactive password checker. In 16th

NIST-NCSC National Computer Security Conference, pages 1{15, 1993.

[FGL93] David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch. An examination of federal
and commercial access control policy needs. In NIST-NCSC National Computer Security

Conference, pages 107{116, Baltimore, MD, September 20-23 1993.

[FK92] David Ferraiolo and Richard Kuhn. Role-based access controls. In 15th NIST-NCSC

National Computer Security Conference, pages 554{563, Baltimore, MD, October 13-16
1992.

[GD94] Ravi Ganesan and Chris Davies. A new attack on random pronouncable password
generators. In 17th NIST-NCSC National Computer Security Conference, pages 184{
197, 1994.

[GL91] T.D. Garvey and T. Lunt. Model-based intrusion detection. In Proc. 14th Nat. Computer

Security Conference, pages 372{385, Washington, DC, October 1991.

[IKP95] K. Ilgun, R.A. Kemmerer, and P.A. Porras. State transition analysis: A rule-based
intrusion detection approach. IEEE Transaction on Software Engineering, 21(3):222{
232, March 1995.

[KPS95] Charles Kaufman, Radia Perlman, and Mike Speciner. Network Security. Prentice Hall,
1995.

[MHL94] B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. IEEE

Network, pages 26{41, May/June 1994.

[Neu94] B. Cli�ord Neuman. Using Kerberos for authentication on computer networks. IEEE

Communications, 32(9), 1994.

20

[San93] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 26(11):9{19,
November 1993.

[San94] Ravi S. Sandhu. On �ve de�nitions of data integrity. In T. Keefe and C.E. Landwehr,
editors, Database Security VII: Status and Prospects, pages 257{267. North-Holland,
1994.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2):38{47, February 1996.

[SS94] Ravi S. Sandhu and Pierangela Samarati. Access control: Principles and practice. IEEE
Communications, 32(9):40{48, 1994.

[WL92] Thomas Y. C. Woo and Simon S. Lam. Authentication for distributed systems. IEEE
Computer, 25(1):39{52, January 1992.

21

AUTHENTICATION

Reference
Monitor

ACCESS CONTROL

Objects

User

Security Administrator

AUDITING

Authorization
Database

ADMINISTRATION

LOGGING

Auditor

Security violations

TARGET SYSTEM

Figure 1: Access Control and Other Security Services

22

File 1 File 2 File 3 File 4 Account 1 Account 2
Own Own Inquiry

John R R Credit
W W

Own Inquiry Inquiry
Alice R R W R Debit Credit

W
Own Inquiry

Bob R R R Debit
W W

Figure 2: An Access Matrix

23

BobFile1 John

Own
R
W

Alice

R

R
W

File3 John

Own
R
W

Alice

W

File2 Alice

Own
R
W

Bob

R

File4 Alice

R

Bob
Own

R
W

Figure 3: Access Control Lists for Files in Figure 1

24

File2Alice

Own
R
W

Bob

Own
R
W

Own
R
W

Own
R
W

R

R

R

W

R
W

File1

File1

File1John

File2 File4

File4File3

File3

Figure 4: Capability Lists for Files in Figure 1

25

Subject Access mode Object

John Own File 1

John R File 1

John W File 1

John Own File 3

John R File 3

John W File 3

Alice R File 1

Alice Own File 2

Alice R File 2

Alice W File 2

Alice W File 3

Alice R File 4

Bob R File 1

Bob W File 1

Bob R File 2

Bob Own File 4

Bob R File 4

Bob W File 4

Figure 5: Authorization Relation for Files in Figure 1

26

All Accesses

Discretionary
Policy

Mandatory
Policy

Role-Based
Policy

Figure 6: Multiple Access Control Policies

27

.

.

.

.

.

SUBJECTS OBJECTS

w
rit

es

reads

reads

reads

reads

w
rit

es

w
rit

esw
rit

es

TS

S

C

U

In
fo

rm
at

io
n

F
lo

w

TS

S

C

U

Figure 7: Controlling Information Flow for Secrecy

28

. .

.

.

.

SUBJECTS OBJECTS

C

I

U

Inform
ation F

low
re

ad
s

re
ad

s

re
ad

s

w
rites

w
rites

w
rites

C

I

U

Figure 8: Controlling Information Flow for Integrity

29

Hardware

Engineer

Software

Engineer

Engineer

Supervising

Engineer

Figure 9: A Role Inheritance Hierarchy

30

Auditor

AUDIT CONTROL
History and
audit control
information

alarm for violation

Audit log

event

TARGET SYSTEM

Figure 10: Passive Intrusion Detection

31

Auditor

AUDIT CONTROL

Event to be controlled

History and
audit control
information

violation/inquiry

Protective countermove

protective move
suggestion

TARGET SYSTEM

Figure 11: Active Intrusion Detection

32

